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Abstract

Stochastic diffusion of the energetic ions in spherical tori is considered. The
following issues are addressed: (i) Goldston-White-Boozer diffusion in a rip-
pled field; (ii) cyclotron-resonance-induced diffusion caused by the ripple;
(iii) effects of non-conservation of the magnetic moment in an axisymmetric
field. It is found that the stochastic diffusion in spherical tori with a weak
magnetic field has a number of peculiarities in comparison with conventional
tokamaks; in particular, it is characterized by an increased role of mecha-
nisms associated with non-conservation of the particle magnetic moment.
It is concluded that in current experiments on National Spherical Torus
eXperiment (NSTX) the stochastic diffusion does not have a considerable

influence on the confinement of energetic ions.



I. INTRODUCTION

The magnetic confinement of charged particles depends on the ability of magnetic
configurations to provide integrable particle motion. In axisymmetric toroidal plasmas
most particle orbits are regular and weakly deflect from the flux surfaces. However,
the motion of some particles may be stochastic, which can lead to the escape of these
particles to the wall for a time small in comparison with characteristic collisional times.
The stochasticity results from small but chaotic changes of adiabatic invariants of the
particle motion caused the presence of the ripple of the toroidal magnetic field, the plasma
turbulence, and the finite Larmor radius of the particles.

In particular, the ripple is known to deteriorate the confinement of the energetic ions
in Conventional Tokamaks (CT), the dominant loss mechanism being the stochastic dif-
fusion of trapped particles discovered by Goldston, White, and Boozer (GWB).! The
ripple amplitude, d,, in Spherical Tori (ST) is of the same order as in CTs; nevertheless,
one can expect that the physics of the ripple-induced transport of energetic ions in ST's
may considerably differ from that in CTs. The matter is that STs are characterized by
lower magnetic field, higher 3 (5 is the ratio of the plasma pressure to the magnetic field
pressure), lower aspect ratio of the torus, and larger Shafranov shift. These factors influ-
ence the interaction between the ions and the ripple by both changing the characteristic
frequencies of the particle motion (the bounce/transit time frequency, the precession fre-
quency, and the gyrofrequency) and affecting the contours of constant d,;,. In addition,
they can make effects of the fast-ion Larmor radius considerable. Because the magnetic
field in ST's is much lower than that in CTs, at least, in present-day machines, resonances
involving the gyrofrequency of the energetic ions may become of importance. One can ex-
pect that specific features of the diffusion appear also because the magnetic field strength
in STs can have a maximum near the outer edge of the torus (in high-3 discharges).

The GWB diffusion arises from the non-conservation of the toroidal angular momen-
tum of a particle, which is a direct consequence of the violation of the axial symmetry by

the ripple. In contrast to this, the diffusion associated with the cyclotron resonance be-



tween the energetic ions and the ripple is caused by simultaneous changes of the toroidal
angular momentum and the magnetic moment of the ions. Both circulating and trapped
particles rather than trapped ones only can be affected by the ripple through the cy-
clotron resonance. Attention to possible influence of this resonance on the ripple-induced
diffusion of the energetic ions was drawn in Ref.?, where, however, it was found that the
considered diffusion plays a minor role. In STs, this diffusion was not considered yet.
Probably, the stochastic diffusion of the energetic ions may occur also in axisymmetric
laminar plasmas. The matter is that the particle magnetic moment experiences a small
but noticeable kick in the point of the orbit where the magnetic field strength is minimum.
This effect was discovered more than 40 years ago when studying the particle confinement
in the open mirror traps by Garren et al.®> Therefore, we will refer to it as “Garren effect”.
The purpose of this work is to consider various mechanisms of stochastic diffusion
of energetic ions in STs in the absence of MHD activity and to evaluate possible influ-
ence of such diffusion on the confinement of the energetic ions, first of all, in the NSTX
spherical torus. The structure of the work is as follows. In Sec. II the particle motion
is analyzed in the assumption that the stochasticity conditions are satisfied, the analysis
being qualitative to a considerable extent. Both the GWB diffusion and the Cyclotron-
Resonance-Induced (CRI) diffusion are considered, the analysis employing the similarity
of the ripple and a wave perturbation. In addition, the Garren jumps of the magnetic
moment and the particle radial coordinate are investigated. In Sec. III a Lagrangian
formalism is suggested for the description of the nonadiabaticity of the particle motion
caused by the ripple and the Garren effect. In Sec. IV the developed formalism is ap-
plied to the derivation of a formula for the Garren change of the magnetic moment. In
Sec. V the transition to chaos is investigated, and the critical ripple amplitude is calcu-
lated with taking into account the Larmor radius of energetic ions and analyzed for the
GWRB diffusion and CRI diffusion. This is done by using a new adiabatic invariant of the
particle motion. In Sec. VI possible consequences of the stochastic diffusion are discussed.
Sec. VII summarizes the obtained results. In Appendix A an expression for the field line

curvature in a finite-pressure plasma is derived. Appendix B describes the averaging of

3



the particle motion near a resonance, which results in a new adiabatic invariant of motion

used in Sec. V.

II. INTERPLAY OF THE RESONANCES AND PARTICLE MOTION DURING

STOCHASTIC DIFFUSION

We begin with an analysis treating the ripple of the magnetic field as a wave of small
amplitude with zero frequency. In order to analyze the effect of the ripple on energetic
ions, we consider the kinetic response of these ions. For the sake of simplicity, we assume
that the magnetic perturbation, B, varies only along the large azimuth of the torus and
is characterized by the longitudinal wave number kj = N/R,, where Ry is the radius
of the magnetic axis of the torus, /N is the number of the toroidal field coils. Taking
B « exp(—iNy) with ¢ the toroidal angle variable, we write a well-known solution of the

linearized kinetic equation for the disturbed part of the particle distribution function (f)

as follows, cf. Ref.*:

F= S Ho(Uws) — swy — N{g)) XILF, 1)

where

H:fdt exp{—i/otdt'(le—Ngb)}, 2)

~ le 8 6
N=——-N—
B ou oP’ )

F is the unperturbed part of the distribution function, P = MwvR—(e/c)t is the canonical
angular momentum, v is the poloidal magnetic flux, R is the distance from the major axis
of the torus, v)| is the particle velocity along the magnetic field, (. ..) means bounce/transit
time averaging, [ and s are integers, ¢ ~ v||/R, (¢) = wp for the trapped particles and
(¢) = wp + oyqup With o, = sgny|| for the circulating ones with ¢ the safety factor, wp
is the precession frequency, d(x) is the Dirac d-function, and X is proportional to the

magnetic field perturbation.



It follows from Eq. (1) that, in general, a particle interacts with the ripple through

the following resonance condition:
Hwp) — swy — N{¢) = 0. (4)

The resonance (4) is the large-time-scale one, i.e., it manifests itself for time intervals well
exceeding the particle bounce/transit time. We will refer to it as the “global” resonance
because it is determined by the particle motion along the whole bounce orbit. There
exists a “local” resonance which manifests itself on a small part of the guiding center
orbit. This resonance is well-known and can be obtained by assuming that the wave-

particle interaction lasts for At < w; ' (but At > wz'):
lwp = N¢. (5)

The presence of a perturbation not necessarily leads to diffusion, i.e., particle orbits
may remain regular. But if diffusion occurs (the conditions of the appearance of the
ripple-induced diffusion are obtained in Sec. V), it is realized along the characteristics of

the equation IIF = 0, i.e., along the straight lines in the {P, u} space determined by

NB
P + —— 1 = const. (6)
lLL)B

In the absence of the ripple, Eq. (6) yields an evident condition P = const. Note that
Eq. (6) can be obtained also by using the symmetry properties of the resonant term in the
particle Lagrangian, see Sec. III. As shown in Sec. V, it represents an adiabatic invariant
of the resonant motion.

According to the quasi-linear theory, the diffusion coefficient is proportional to |H|?, see
Ref.%. This implies that H is essentially the normalized jump that a particle experiences
during the random walk. The integral that determines # contains large parameters (N
and wp/wp) in the argument of the exponent in the integrand. Therefore, only the points
determined by the local resonance condition mainly contribute to the integral. If the local
resonance cannot occur during the particle orbital motion, # is exponentially small. Note
that local resonances result in jumps of particles even without a global resonance, but

then the effects of the jumps do not accumulate.



A. GWB diffusion (I =0 resonance)

Certain conclusions can be drawn by analyzing the fulfillment of the resonance con-
ditions. When [ = 0, the global resonance is essentially the resonance between the par-
ticle poloidal and toroidal motions, whereas the local one determines the particle turn-
ing points, ¢ = 0. Both these resonances are responsible for the GWB diffusion. The
ripple-particle interaction through these resonances does not change the particle magnetic
moment (a term proportional to d/0u is absent in Eq. (3) for [ = 0). Therefore, the ra-
dial diffusion occurs in the way that the banana tips (¢ = 0 points) lie on the curves
of B(R,Z) = const, where Z is a coordinate in the vertical direction. In STs they may
considerably differ from the R = const lines, especially in the region where the ripple is
large. They can even be closed, see Fig. 1. The particles with the banana tips lying on
these curves will not diffuse from a plasma.

Let us consider the bounce and precession frequencies, which are contained in Eq. (4).
Restricting ourselves to the narrow-orbit well-trapped particles, we can use the magnetic
field in the form B(#) = B(# = 0) + B"6?/2, where B" = §°B/96?|4—o. Then we obtain
wy = vy/AB"/(2By)B,/(rB) and wp = —(qupo/r)k~ By '01n B/0¢|y—y, where By is the
magnetic field at the magnetic axis, B, is the poloidal magnetic field, vpo = pv/(2Ry) is
the characteristic drift velocity, p = v/wpg, wpy = €By/(Mc), k is the elongation of the
plasma cross section, 7 and @ are the radial (flux) and poloidal coordinates, respectively,
and € = r/Ry. The magnitude of wp/wy grows with the ratio of Larmor radius to the
plasma size; therefore, in STs it can be much larger than in CTs. To evaluate wp/wy,
at first, we take the magnetic field in the “standard” form, B = By(1 — ecosf). Using
NSTX parameters (Ry = 85+ 100cm, B =0.3T, £ = 80keV) and assuming ¢ = 0.5, ¢ =
eB/B, = 1.5, we find that wp/w, ~ 1/2, which indicates that well-trapped particles may
be characterized by wp/w, S 1. Furthermore, in high-3 discharges of STs B” decreases,
thus decreasing the bounce frequency (B” can even become negative, in which case tear-
drop orbits appear®). When B” < € but |0B/0r| > Ry"' then wp/w, > 1. This implies

that points with v = 0 disappear (although a particle can remain trapped in the poloidal



direction), which reduces the number of particles affected by the GWB diffusion.

The calculations carried out with the code ORBIT®® confirmed these conclusions.
Calculations were performed for 80-keV deuterium ions in an NSTX plasma with 8 = 25%.
The considered equilibrium is characterized by the presence of a minimum of the magnetic
field strength (the “magnetic valley”) near the outer edge of the torus, see Fig. 1. Particles
were launched from points with # = 0. Trapped particles located in the outer region where
0B/0r > 0 were found, whereas in the internal region, where 0B/0r < 0, particles that
were trapped poloidally but passing in the toroidal direction were observed. The former
were characterized by wp/wy ~ 1/3 —1/5.

Thus, in STs wp S wy. Therefore, large-s resonances take place (s ~ N > 1). A ques-
tion arises of how it affects the GWB diffusion. To clarify this question, we approximate

the particle motion along the large azimuth of the torus by
© = wpt + qby sin wyt (7)

(6 > 0 is the bounce angle), which is justified for the well trapped particles. Here the first
term describes slow regular motion due to precession, whereas the second one describes
bounce oscillations. If the condition of global resonance is satisfied, Eq. (7) takes the

form:
Ny = —s7+&sin, (8)

where 7 = twy, & = Ngb,. It follows from Eq. (8) that the local resonance, ¢ = 0, occurs
at the moments 7, determined by cos 7, = s/£. This implies that the local resonance is
possible provided that the global one is characterized by |s| < €. Furthermore, the local
resonance occurs near 6, only for |s| < & when |[s| S &, it approaches the equatorial
plane of the torus. Because of this, the stationary-phase method, which one usually uses
to calculate the radial jumps caused by the ripple is applicable only when |s| < £. The
mentioned method yields for H:

H = wb_l /027r dre'® = wb_l z % exp {l ((b* + %sgnqi)} ; (9)
x=1,2 *



where ¢ = No, |¢.| = N|d?>p/dr?| = \/€2 — s2. We observe that Eq. (9) predicts H — oo
for |s| — £ (i.e., infinite radial jumps of the particle). On the other hand, the integral in

Eq. (2) can be easily calculated exactly:
H =1J5(8), (10)

where J,(€) is the Bessel function, which can be approximated as follows:

TS 0w 0.45

J5(&) ~ \/%cos (f— 5 Z) fors <&, Ji(€) = an fors=¢ > 1. (11)

Note that the amplitude in the first expression of Eq. (11) exceeds Jy(s) unless £ > 31.
We conclude from here that the stationary-phase method provides a good approximation
when s < £ (then b, ~ €). The same formula for H or a more appropriate one given by
the second expression of Eq. (11) can be used for |s| S . When |s| > &, H is very small

and rapidly decreases with s.

B. CRI diffusion (! # 0 resonance)

Using Egs. (6) and (4), we find that the change of the magnetic moment, Ay, and the
change of the canonical angular momentum, AP, during the diffusion are connected as

follows:

___ (B)Ap
A= 1 s/

(12)
In general, this equation implies that when Apu # 0, the particles move across the flux
surfaces. But this does not necessarily mean that the particles will escape from the
plasma.

Let us consider well-circulating particles. For them, using the definition of P, we

obtain the relationship

€ . B()R()
C U||

Ap. (13)

Combining Egs. (12) and (13) and using Ay = BokrAr/q, we find:



_qp _owwp/wp+s/N
2ke q + o,wp/wy + s/N

Alr) ~ AN, (14)

where A = pB,/E with &€ = Mv?/2 is the pitch-angle parameter. In this equation, s
is zero or not more than of the order of unity; otherwise, the conditions of the local
and global resonances are not consistent. Therefore, we neglect the sideband resonances.
Then, if the toroidal precession is negligible, which is the case in CTs, Eq. (14) yields
A(r) ~ 0. But in high-3 plasmas of STs the precession of well-circulating particles may
be rather strong because of the large Shafranov shift.” Taking wp = épv /R2, where £>1

is a parameter determined by the Shafranov shift,” we obtain:

Afr)y o, EqAN P

~

(r) " 2k(140,6p/Ro) (1)

(15)

For instance, for ¢ = 1.5, k = 1.5, p/Ry = 0.2, £ = 3, and A\ = 0.5, Eq. (15) yields
A(r)/{r) = —0.5(p*/(r)?. Thus, the diffusion of the well-circulating particles, even when
precession is strong, can hardly result in a considerable particle displacement.

However, trapped and marginally circulating particles may be strongly influenced.
This conclusion results from the following equation obtained from P ~ —e(¢))/c and
Eq. (6):

Alr) _ NqgAX p°
(ry = 2kl (r)?

(16)

Equation (16) shows that Ar can be about the plasma radius due to the relatively large
ratio p?/a® in STs. But this will be the case only when the resonance width is sufficient
for the resonances to overlap in a large part of the plasma.

It is of importance to know the trajectories of the motion of the resonance points
during the diffusion. An equation for them can be obtained by using Egs. (5), (6), and
the definitions of P and p. We find:

2l I’R*B

N e p°B = const, (17)

where ¢ = ¢¥(R,Z), p = p(R,Z), B = B(R,Z). The second term here is typically

small. Taking this into account, we conclude that when p is small, the resonance points



move approximately along flux surfaces; therefore, the motion does not lead to a loss of
the particles (unless the particles strike the wall because of finite p during this motion).
On the contrary, when p is large, the resonance points move approximately along the
B = const lines (as in the case of the GWB diffusion), which may result in escape of the

particles to the wall. To obtain corresponding conditions, it is convenient to eliminate [

in Eq. (17) by means of Eq. (5):
2X%¢ — Bp*(1 + x*) = const, (18)

where x(R, Z) = v|/v = IR/(Np) is the pitch angle in the point of the local resonance.
Note that x = const when BR = const. It follows from Eq. (18) that the particles move
approximately along the flux surfaces and, therefore, are well-confined when (we assume

that the change of B during the motion is ~ €By)

kx

RS

Equation (19) can be easily satisfied in CTs, but not in STs. For instance, Eq. (19) is
not satisfied for 80-keV deuterons in NSTX with B ~ 0.3 T. These energetic deuterons
interact with the ripple through [ = £1, £2, and £3 resonances at y ~ £0.3, £0.6, and
+0.9, respectively. One can see that most trajectories for the [ = +1 resonance cross the
wall when BR = const (in which case the orbits of the resonance points are the ellipses
shifted with respect to the flux surfaces). But on the other hand, in high-3 discharges
particle can be confined even when resonance points move along the B = const contours
provided that these contours are closed, see Fig. 1 (as we already mentioned considering
the GWB diffusion).

To evaluate H, we take B = Bj(1 — ecos ) and consider again well trapped particles

described by Eq. (8). We then obtain:

H=3" Jp(0)Tos(©), (20)

where n = lwgeb?/(8w,). When [ ~ 1, typically n < 1; therefore, H ~ J,(£), as in the

[ = 0 case. This is explained by the fact that the point 7, satisfies an equation which
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approximately coincides with the one for the [ = 0 diffusion when 1 < &. This can be seen
from the equation ¢ = —s7+& sin 7 —nsin(27). However, different values of s are relevant
to the GWB diffusion and CRI diffusion because the points determined by Eq. (5) with
I =0 and [ # 0 are different. For instance, |s| = | £ 15 — 4] for | = +1 and |s| = 4 for
| =0 when wy/|wp| =4, wp/w, = £15, N = 16. We observe that the cyclotron resonance
is characterized by higher magnitudes of |s| with |s|min < & (|S|min = 9, £ = 16q0).

Particles in this resonance experience a jump slightly exceeding the [ = 0 jump.

C. Garren effect (imaginary local resonance)

It was shown by Garren et al.® that the particle magnetic moment (u) oscillates about
a fixed value with the gyrofrequency until the particle crosses the median plane of the
mirror machine, near which p suffers a relatively large transient change (6u). In general,
this means that a particle experiences small kicks when crossing minima of the magnetic
field. The change of the magnetic moment, du, found in Ref.® scales with the particle
velocity and the magnetic field as exp{—c; B/v} with ¢; = const, which implies that the
effect may be of importance for fast particles moving in a weak magnetic field. Later a
formula for §yp was suggested.” ! Below we use a little bit different formula derived in
Sec. IIT (where, in addition, a comparison of our result with the previously obtained one
is carried out):
b 1/2
= QUx/X/tl dt (%) R;c (1 - %) cos(®), (21)
where & = ¢, — f(f dt'wg is the gyrophase, t; and t, are the turning points, R, is the
radius of the field line curvature. We observe that 6\ given by Eq. (21) is proportional
to an integral similar to H with N = 0 except for the presence of an additional weight
function. Therefore, Garren’s kicks are essentially sharp changes of the drift invariants
in the absence of a local resonance. But on the other hand, below we will show that
the point in the complex plane ¢, = Ret, + ilm ¢, where B(t,) = 0 mainly contributes

to the integral in Eq. (21) for the particles satisfying Eq. (4) with N = 0, [ = 1. For
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this reason, one can say that Garren’s kicks are caused by an imaginary local resonance
determined by the resonance condition given by Eq. (5) with N = 0 and [ # 0. We can
easily calculate H exactly (without the use of the steepest-descent method, which one
usually applies to calculate du), restricting ourselves to the case of either well-circulating
or well-trapped particles. To make calculations for circulating particles, we replace the
integral fttlz dt in Eq. (21) by § dt, which corresponds to Eq. (2). We consider the particles
satisfying the global resonance condition, for which the displacements accumulate, and
take the magnetic field in the form B = By(1 — ecosf). Then, taking 0 = 7 with 7 = tw,

for the circulating particles and # = 6, sin 7 for the trapped ones, we obtain:
HE =1 Js(s€), H' = 7pJn(ned; /4). (22)

where |s| = (wg)/wp, and n = s/2 are integers, the superscripts ¢ and c¢ are relevant to
trapped and circulating particles, respectively. Because s > 1 and € < 1, Eq. (22) can

be approximated as follows:

(e 2 T 8
HE =~ b_e {—s(ln——l)}, H ~ b_¢ {—n(ln——l)}. 23
Ve P Vo U =

Equation (23) provides a good approximation only for sufficiently small €; otherwise, it

overestimates the Bessel functions. To find the point that mainly contributes to the
integral, we recall that according to the steepest-descent method (which is applicable due
to the large ratio (wg)/wyp), T should be considered as a complex variable and that the
saddle point of the phase is determined by the equation ® = 0, i.e., B(r,) = 0. The main
contribution to the integral for the resonant particles comes from the vicinity of this point
(for these particles, the contribution of the end points vanishes as ®(7+27) = ®(7)+27s).
In the considered case Re T, = 0, which means that 8, = 0. Thus, as expected, the point
where B(f) has a minimum is responsible for the jump of p. It follows from Eq. (23) that
‘H exponentially decreases with the resonance number (s). On the other hand, H strongly
depends on €, which is essentially B" (0 = 6,).

In order to evaluate )\, we approximate the radius of the field line curvature as
R, = Ry(1 + ecosf), see Appendix A, in which case BR, =~ const. Then, taking into

account that the point 7, mainly contributes to the integral, we obtain (we take &5 = 0):
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V2Xv

0N =
Ry

. (24)

Note that Eq. (24) is obtained from Eq. (21), which includes effects of the plasma pressure.
However, these effects were disregarded when we took BR,. = const. On the other hand,
the influence of plasma pressure on R, is rather small (see Appendix A) although the
field line curvature is kK = k1 + kg, where k1 x V1 B, k1 o« V p. When 3 becomes high,
|ko| becomes considerable, but its increase is compensated for by a corresponding change
of k;. Taking R, = Ry(1 + ecosf), we avoid the risk to overestimate considerably JA
by calculating separately the integrals associated with x; and ks, as would be done if we
used, e.g., the general formula for )\ presented in Ref.!!. [The integrals in Eq. (21) may
be rather sensitive to the truncation of terms of high order in ecos#, which can be seen
from, e.g., the fact that § dtwp(t) exp(i®) =i § dexp(i®) = 0 for the particles satisfying
the condition (wg) = swy, where s is an arbitrary integer.] Thus, one can think that
Eq. (24) represents a reasonable estimate for the A jumps in low-/3 plasmas.

In discharges with relatively high 3 (e.g., in current experiments on NSTX with
not exceeding 25%) B(0 = 0) = By, but 0B/0r > 0 at § = 0 in some region outwards
the magnetic axis. The magnetic field in this case can be approximated as B = By(1 —
€ cos 0+ ae?) with 2ae > 1 in the region of the magnetic valley. One can show that in this
case the factor In(2/¢) in Eq. (23) must be replaced by In(2¢ !+ ae). This implies that the
magnetic valley (the region with 0B/0r > 0 at @ = 0) reduces du. The obtained result
has a simple explanation: in the presence of the valley the lines of B = const deflect from
the R = const lines in the region where B is minimum in such a way that the variation
of B during a passage of a particle through the minimum-B region is reduced, see Fig. 1.

In plasmas with very high 3, B(f) may have a maximum at # = 0. Then jumps of
1 at @ = 0 disappear; one can expect that instead of them small jumps will occur above
and below the midplane of the torus.

When §A (or du) is sufficiently small, the particle motion remains regular, i.e.,
“superadiabatic.”'%!3 In the contrary case, when &\ is sufficiently large, stochasticity

arises. However, its effect on the bounce-averaged orbits of trapped particles will be
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negligible: for these particles P ~ —(e/c)(1); therefore, §{(1)) ~ 0. A jump of X of a
circulating particle results in a radial jump according to the following equation (we use

P = o,MqR%w;, — (e/c){1)) = const ):

Oy4qp 1—e¢

where x,, = /1 — A(1 — €) is the particle pitch angle at # = 0, and

_ AmgVA
= Vo J,(se). (26)

We observe that d\ and 6(r) vanishes for the “most circulating” particles, i.e., for the

oA

particles with A = 0 (but du/pu = 6\/\ = oo for them!). A discussion of a possible role of

the stochastic diffusion is contained in Sec. VI.

III. LAGRANGIAN FORMALISM FOR THE DESCIPTION OF THE

NONADIABATIC EFFECTS IN THE PARTICLE MOTION

In our consideration of the particle motion, we follow a perturbative approach. We
approximate the exact Lagrangian of the particle motion in the magnetic field of a spher-
ical torus by the Lagrangian of a certain integrable system and consider the difference
between the exact and integrable Lagrangians as a perturbation. For such an approach
to be justified, the integrable Lagrangian (which we consider as describing the motion of
the unperturbed system) should be chosen in such a way that the perturbation defined
so is small.

We split the magnetic field into the axisymmetric part, B, and the small nonax-
isymmetric component (ripple), B. Then we choose the lowest-order Lagrangian of the
guiding-center motion'* in the axisymmetric field B,

MUHB

Loo(X,E, 1, X, &) = %A(X) X+ —

. Mec .
(X)-X + ?C;@ — &, (27)

as the unperturbed system (we neglect the effect of the equilibrium electric field on the
particle motion). Here X is the guiding center position; e, M, and £ are the charge,

mass, and energy of the particle; ® is the gyrophase; A and A are the vector potentials
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corresponding to B and B, respectively; v = {2[€ — uB(X)]/M}"/? is considered as
a function of X, £ and . The guiding center position, X, and the particle position,
x, are connected to the considered order by the relation x = X + v, a/wp, where a =
cos(®)é;(X) — sin(P)éy(X), €; and €, are arbitrary unit vectors constituting with the
vector b = B/B a local orthonormal base and slowly varying in space (we take the
normal to the magnetic field line as €, and the binormal, as —€;). The Lagrangian given
by Eq. (27) describes an integrable system, possessing three constants of motion: &, P,
and p.
The exact Lagrangian of a particle in the rippled magnetic field is

L(x,v,x) = Z Ax)+Ax)| - x4+ Mv-% — %?)2, (28)

Note that this Lagrangian, as well as that given by Eq. (27), differs from the Lagrangians
that one usually meets in analytical mechanics. First of all, it depends on six (rather than
three) phase space variables, x and v, and their time derivatives. During the variational
process, the variations of all the phase space variables are to be considered independent
even though the equations of motion imposes some functional dependence on them. In
particular, v and x in Eq. (28) are considered as independent variables. The larger num-
ber of variables is compensated for by the fact that the Lagrangian depends on them

linearly. This property facilitates using the Lie transform methods to construct pertur-

bation schemes (a more detailed discussion of related topics can be found in Refs.!*!?).
Equation (28) can be presented as follows:
L=Lye~+ (Las — Lge) -I—&C — Easl = Lo+ 0Ly + Lo, (29)
6L1 6L
where
M
Los(x,v) = EA(x) X+ Mv-x— ?1}2, (30)
¢

is the Lagrangian of the particle motion in the axisymmetric field. We will consider 6L,
and 0L, as perturbations. The first of them,

Mv . Mc .
B”B(X) X~ —ud, (31)

5L, = SA(x) %+ Mv-%x— SAX)-X -
C C
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describes the difference between the exact and guiding-center descriptions of the particle
motion and is responsible for all nonadiabatic effects in the axisymmetric field (including
the Garren effect). The second one,

5Ly = SA(X) ‘%, (32)

represents the effect of the ripple. Note that we avoid using the guiding-center approxi-
mation for the particle motion in the rippled field because the characteristic length of the
ripple variation in, e.g., NSTX is not large in comparison with the Larmor radius of fast
ions (80-keV deuterons). On the other hand, the characteristic variation length of the
axisymmetric part of the field strength is large in comparison with the Larmor radius of
the particles under consideration. This gives us grounds to assume that the error of the
guiding-center approximation in the axisymmetric field, which is given by d£;, is small
and, thus, that the perturbative approach is justified (the equations for the variation of
u given below can be used to determine more exactly when this assumption is true).

As the Lagrangian system given by Eq. (27) is integrable, each trajectory of the
system lies on a certain three-dimensional torus in the phase space (a Kolmogorov-Arnold-
Moser, or KAM, torus),'® which is in our case determined by the equations £& = const,
i = const, P = const. The position of a particle on the torus can be described by three
angular coordinates, which can be chosen so that they depend linearly on time along the

trajectories (so-called canonical angles):'®
<1 = <(4)B>(6,,UJ,P), <2 :wb(ga,u’ap), <3 :w(p(ga,u': P)a (33)

where ¢;, ¢ = 1,2,3, are the canonical angles describing the gyrophase, the poloidal
position and the toroidal position, respectively; w, is the frequency of the toroidal motion.
The canonical action-angle coordinates for the particle in an axisymmetric magnetic trap
were first constructed in Ref.!” via the generating function of an appropriate canonical
transformation. An easier way to find the connection between conventional and canonical

coordinates is to use the constancy of the time derivatives of the canonical angles. We

find:!8
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0
a=0-w(e), o= wb/ df/0, <= ¢ —v(s), (34)
0

where v = [* dey (¢ — wy)/wy and w = [ dez (wp — (wp))/ws are continuous periodic
functions of #; the integrals are taken along the guiding-center orbit P(r,0,&, u) = const,
i = const, & = const; 9(0, P& u) = X - V6 and o0,P,E, u) = X -V (when €¢/q < 1,
¢ ~ v)|/R) are angular velocities of the unperturbed guiding-center motion.

On transforming to the canonical angles, the Lagrangian L, can be written in the

form (cf. Ref.'®)
E_qc == J1<1 + J2g.2 + J3§-3 - 87 (35)
where J; = pMc/e, J3 = P, and

To(J1, Js, €) = % 7( ixX - [ZA(X) + @B(X) (36)

are the action variables canonically conjugate to ¢;, ¢, and ¢3, respectively; the in-
tegral in this equation is taken along a contour that is determined by the equations
P(r,0,u,&E) = const, u = const, & = const (i.e., lies on the corresponding invariant torus
of the system) and makes one turn in the poloidal direction and no turns in the toroidal
direction. Note that for narrow banana orbits J, becomes the longitudinal adiabatic in-
variant, § dsmuy/(2r), where the integral is taken along a field line between the orbit
bounce points, ds is the differential of the field line length. If we considered £ as a function
of Ji, Jo and J; (the Hamiltonian of the system), the Euler-Lagrange equations following
from Eq. (35) would be conventional Hamilton’s equations in action-angle coordinates.
However, it is more practical to consider .J, as a function of J;, J3, and £. Thus, we use

G1, S2, S3, J1, J3, and £ as coordinates. Then the Euler-Lagrange equations are as follows:

Ji=Jy=J3=0, (37)
Y 470 AN Y
gl =Wy = — (y) a—(]l = <CJB>, (38)
L (R\T"_
G2 =Wwr = (%) = Wh, (39)
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: aJy\ ol
azw=-(52) FE-w. (40

IV. DERIVATION OF A FORMULA FOR GARREN KICKS

We proceed from Eq. (31), which gives the difference between the exact and guiding-
center descriptions of the particle motion in the axisymmetric field. Assuming that the
field variation scale is much larger than the gyroradius, we expand A(x) in a power
series in x — X = v a/wp(X). The resulting rather cumbersome expression for £, is
considerably simplified on using the following property of the Lagrangian formalism: The
equations of motion are invariant under the substitution £ — £ + dS/dt, where S is an
arbitrary function of ¢ and phase variables. In particular, it is known'* that the derivation

of the guiding-center Lagrangian £, has included such a substitution with

ev?
cwp(X)?

S = - AX)a-

(a-V)A(X) - 4. (41)

On applying this substitution to £, most terms are canceled, and we present dL; to the

leading order as follows:

Muojv, - M’Ui
= b . _+_
wB(X) g QWB(X)

where & = cos(®)dé; /dt — sin(P)dé,/dt.

A 2,2 )
6 %2 Ml o g)Bx). (éxX) , (42)

oLy dt ' 2eB(X)?

To derive an equation for fi in the axisymmetric field, we set 6L = 0 and write the

following Euler-Lagrange equation:

d (0Lg 0L\  05L
dt \ 9d o /] 0%’

from which it immediately follows that

. € 85£1 d 85£1
“—m[aq) %(&p)] (44)

Substituting 6L, from Eq. (42) and keeping only terms of the lowest order in the gyrora-

dius, after straightforward calculations we obtain the following equation:
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__M’UH'UJ_A 85 M’Ui 0 ~ AN
= 300" 9 * X796 (a-V)B(X)-(uX)] (45)

The second term of the right-hand side of this equation is proportional to exp(2i®).
Therefore, it gives an exponentially small contribution to jumps of the magnetic moment?®
and will be ignored. Keeping only the longitudinal component of X (the transversal

component is of higher order in the gyroradius) and using the Frenet equations, we obtain:

de de .

—dtl ~ UH—dll = _UHTeQ, (46)
deésy deésy - .
— Ny — = — 4
7 | i UHHb + 7€, (47)

where dl is the the differential of the field line length, 7 is the field line torsion. Substi-

tuting these equations to Eq. (45), we finally arrive at the following equation:

viv 2 AB
,zlzMgRLCos(P:M?l;jéL (1——)cos@, (48)

where we again restricted ourselves to the leading order in the gyroradius and omitted
terms containing exp(2i®). Equation (48) is essentially Eq. (21).

Equation (48) seems to disagree with previous results of Refs.>!?. According to these
works, the second term in the parentheses in Eq. (48) should be twice less. However, when
the plasma pressure is negligible, the discrepancy is easily explained by the difference in

the definitions of y in Refs.?!0

and here. Here p is defined in terms of the magnetic field
at the guiding center, y = Mv? /[2B(X)], whereas in the mentioned previous works the
magnetic field is taken at the particle position. In the latter case the particle gyration

introduces additional terms into fi:

) d { Mv? ) T
,ulocalE_( J_>:,U«—'UIJ_C'VLB

dt \ 2B(x) B(X)
=p+M it cos ® — M27w?i [(é2 - Vp) cos @ + (&1 - Vp) sin D] (49)
2BR, B3 2 ! ’

where ¢ = 04/0% = axb = — sin(®)é; (X) — cos(®)é,(X) is the instant direction of the
particle gyromotion. The first two terms of Eq. (49) yield the equation for §u of Refs.%19.
Therefore, we conclude that Eqgs. (48) and (21) differ from the mentioned previous for-

mulae by taking into account effects of plasma pressure described by last two terms of
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Eq. (49). Introducing a curvature-like parameter 87B~2Vp in addition to k = R_', we
could obtain a formula for fij,.q similar to that derived in Ref.!!. However, the equation
for j1 given by Eq. (48) [and the corresponding equation for du given by Eq. (21)] are

much simpler, while correctly describing all mentioned effects.

V. CRITICAL RIPPLE AMPLITUDE

We proceed to determining the critical amplitude of the magnetic field ripple at which
the particle motion becomes stochastic. In this section, we will neglect the effect of Garren
kicks, considering only the Lagrangian perturbation L, given by Eq. (32). Moreover, we
will disregard the imaginary resonances possible for the perturbation 6£; describing the
field ripple.

The KAM theory states that the presence of a sufficiently weak perturbation does
not change qualitatively the behavior of a Hamiltonian system near most of invariant
tori (see, e.g., an overview in Ref.!® for a more rigorous discussion of the topic). Most
tori are slightly distorted, but their topology remains unchanged, which means that the
average effect of the perturbation for a long period of time vanishes. The exceptions are

the resonant tori, which in our case are the KAM tori satisfying the resonance condition
3
Z n;w; = 0 (50)
j=1

for some integer n;, 7 = 1,2,3. On such tori, the effect of the perturbation is secular,
i.e., accumulates in time, in linear approximation. Nonlinear consideration shows that
the effect of a resonance is determined by the competition between the perturbation mag-
nitude and the “detuning” from the resonance, i.e., the change of the frequencies because
of the deviation from the resonant torus. When the perturbation amplitude is relatively
small, the modification of the phase-space topology consists only in the appearance of
resonance islands in the vicinity of each resonance, the deviations of resonant trajectory
on large time intervals being higher than that of nonresonant ones but still restricted.

This phenomenon is referred to in the literature as “superadiabaticity”.!?!3 (Another
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term occurring in the literature for the orbital motion of particles in resonance islands
is “superbanana motion”, which is often used even when the particles under discussion
are not banana particles.) At higher amplitudes, which approximately correspond to the
overlap of the islands of neighboring resonances (the Chirikov stochasticity criterion'?),
the trajectories wander stochastically between different resonances. More exactly, such
global stochasticity arises when the ratio of the distance between the resonances to the
resonance island width exceeds 7/2 (although the 7/2 rule, as well as the Chirikov crite-
rion in general, is proven only for certain Hamiltonian systems, in particular, the standard
mapping,? it seems to work in many other cases, see, e.g., Ref.2!).

Thus, the critical perturbation amplitude that is required for the transition of a Hamil-
tonian system from the superadiabatic behavior to global stochasticity can be found by
studying the islands produced by separate resonances. For this purpose, we generalize the

18,22 The main idea of the approach is that the phase-space

approach proposed in Refs.
variables can be divided in the vicinity of each resonance Z?:l njw; = 0 into “slow”
variables (Ji, Jy, Js, and Z?:l n;s;) and “fast” ones (two other independent angular
coordinates). This, first, opens a possibility to simplify the description of the system
by averaging over the fast variables and, second, indicates the existence of an adiabatic
invariant associated with such averaging (we refer to it as “a resonance adiabatic invari-
ant”). It turns out that the level contours of the resonance invariant characterize the
structure of the resonance island. Hence, the invariant can be used for finding the island
width.

To implement this program, we introduce new canonical angular coordinates by the

linear transformation
a = Qg, (51)

where ¢ = col(s, $2,63), « is the vector of the new angles, and

ny Ng N3
Q=0 1 0 (52)
1 0 0




One can see from Eqs. (38)—(40) and (50) that the coordinate a4 is chosen so that it is

constant at the considered resonance. The Lagrangian L, then takes the form
Loe=T-6—&, (53)

where I = (Q7)™'J, J = col(Jy, J2, J3). Without loss of generality, we will consider I, as
a function of the other action variables and £. As shown in Appendix B, in a vicinity
of the resonance there exists a small coordinate transformation (a1, as,as,I1,I3,€) —
(@1, g, @3, I1, I3, E) such that the Lagrangian of the motion in the rippled field, £ =

Lgc+ 6L,, in the new coordinates is free of fast oscillations and has the form
=18+ 1@y I T &) + I - G — &, (54)
where
Ian, I, I3, €) = L(L, I, ) + I(an, I, I3, £), (55)

I, = J5(P, i, E) — (na/n3) P [as follows from Eq. (52)];

B 1 nam
I =- 2,2 / d§10/ dx - EA(X); (56)
47‘— n3 —ngmw L(clO:alypauig) ¢

L(10, a1, P, i1, €) is the curve in the phase space determined by the equations —nzm <
@ < nam, ¢ = G0 + (w1/wa)sa, 3 = (g — nis1 — nase)/ns, P = const, 4 = const,
&€ = const; the parameters «; and 6y determine the perturbation phase along the curve
and the gyrophase at the equatorial plane, respectively. In other words, L(s19, a1, P, i, €)
is a trajectory of a particle moving with the frequency ws modified to satisfy the resonance
condition exactly. At the resonance torus, these curves coincide with actual unperturbed
trajectories.

Equation (54) presents the Lagrangian of the “slow” motion averaged over fast vari-
ables. One can see that I (as well as I3 and &) is a constant of motion of the Euler-Lagrange
equations resulting from this Lagrangian. On the other hand, the difference between the
coordinates (a1, g, i3, I, I3) and (o, g, a3, Iy, I3) can result only in adiabatic variations

of the “non-averaged” variables (a1, ag, as, I1, I3). Due to this, I given by Egs. (55) and
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considered as a function of (a1, ae, as, I1, I3) is a new adiabatic invariant — the resonance
adiabatic invariant that we have wanted to obtain.

Symmetry properties of Eq. (54) enable us to recover the characteristics of the Eq. (6).
Indeed, as mentioned above, I3 and £ are constants of motion of Eq. (54) (because of the
independence of the Lagrangian on a3 and t, respectively). This means that the resonant
motion described by Eq. (54) can result in nonadiabatic changes of I; but adiabatically
conserves I3. Writing I3 in terms of P = J; and p = eJ;/(Mc), we arrive at Eq. (6).

As we are interested in “slow” motion of particles on times long in comparison with
the bounce period, below we will not distinguish between the averaged and non-averaged
coordinates and will not use bars over variables as a notation of averaging over ¢, and 3.

To proceed further, we need to specify the vector potential of the magnetic field
ripple, A. We will take into account only the main toroidal Fourier harmonic of the
ripple, assuming that Brp(R, Z, ¢) = Br,(R, Z)[1 + 6,ip(R, Z) cos(N )|, where By is the
toroidal field, Br, is the toroidal average of Br. The specific design of the toroidal field
system in STs (the presence of the central post) leads to the spatial dependence of the
ripple amplitude of the form 6,;, = d exp(R/L;i,), where dy and L,;, are constants (in
NSTX 8§y = 7.07 x 107?, L,;, = 11.36 cm. As a result, the ripple is negligible at the inner
circumference, near the central post. We choose the gauge so that Az = 0, where the
subscript denotes the covariant component. As the exponential variation of d,;, is much

stronger than the variation of Br,,
~ R
Ay = / dR 6,ipBra cos(N @) & Lyip0ripBre cos(Ng). (57)
0

For the same reason, because the dependence of By, is much weaker than the dependence
of 4,4, on R, the ripple affects the R component of B much stronger that the Z component.
Therefore, we neglect fl(p, whence A - dx ~ A,dZ. We also assume that €/q < 1. Then
the deviation of the Larmor circles from the vertical plane and the contribution of v to
dZ are negligible, and the main contribution to A;dZ comes from the gyromotion. It
is more convenient for the calculations in this section to set €;=V R and €,=VZ. Then

the gyrophase is defined so that R = R+ p, cos®, Z = Z — p, sin ®, where bars over
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quantities indicate that they are taken at the guiding center, p, = v, /wg. Substituting

these expressions into Eq. (56), setting dZ ~ —p, cos ® d®, and using Eq. (57), we obtain

B 1 nam o
I = ——/ d§10/ d®L,;,0.i Brpy
47T2n§ —n3m L(C105a17P5ll'!£) nee

cos (I>> cos(Ny). (58)

Tip

X cos @ exp (LpL

Expressing ® and ¢ in Eq. (58) in terms of canonical coordinates via Eq. (34), expanding

the integrand in a Fourier series and using the definition of L(sio, a1, P, 1, ), we find

N 1 > nam { Nng
I= _W Z {Tls/ dsip exp [l (n—3 +l) §10]

l,s=—00 —nsm
nam N N
X / d<2ﬂeXp [z (i + l) Go+1 (ﬂ — 5) §2:| + c.c.} . (59)
—nsm %)) T3 ns

where “c.c.” means complex conjugate,

6L”' 1 — _
Tls(P, M, 8) = 40(,(.): % %‘ d<25ripBT/UJ_al ([i?l
rip

> exp(—iN(). (60)
ai(z) = [li—1)) (@) + ly11/(2)]/2, 1;(x) are modified Bessel functions of the first kind, ¢ =
C(s2, P, i, E) = v+ ilw/N + isca/N. One can see that the integral in Eq. (59) vanishes
for given | and s unless ny/ng = —I/N, ny/n3 = s/N. Thus, the effect of the resonance
described by Eq. (50) can be non-zero only when this equation coincides with the global
resonance condition given by Eq. (4) up to a factor. Therefore, we will consider without
loss of generality that n; =1, no = —s, n3 = —N.

For large N, the factor exp(—iN() in the integrand of Eq. (60) is typically a rapidly

oscillating function of ¢,. It is known that the main contribution to such integrals comes

from the vicinities of the points of stationary phase, i.e., the points where

.. 0C ov ow
i N—=—=-N—+1]—+5=0. 61
! 0% 0%, 0%, ° ( )

Using Eqs. (4) and (34), one can show that Eq. (61) at the exact global resonance is
equivalent to the condition of local resonance [Eq. (5)]. Thus, the jumps of the mentioned
integral in Eq. (60) reflect the well-known jump-like behavior of particles near the points

of the local resonance.
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We observe that the integral in Eq. (60) contains only the effect of local resonances
with the same value of [ as in the global resonance condition, which corresponds to our
discussion of the interplay of global and local resonances in Sec. II. This enables us to
make an important conclusion that the width of resonance islands with some given [ is not
affected by particle jumps caused by local resonances with other values of [. Typically,
there are two points of the local resonance for a given [ on a particle orbit. For instance,
a banana particle in NSTX launched at the equatorial plane with y > 0.6 passes through
two points of the I = 2 resonance, two points of the [ = 1 resonance, two points of the
[ = 0 resonance, and two points of the [ = —1 resonance for each bounce. However, if we
are interested in the CRI diffusion with, e.g., I = 1, only one pair of the local resonance
points appears in the corresponding integral in Eq. (60). There exist orbits with four
I = 0 resonance points (¢ = 0) in high-8 discharges of STs,® but such orbits are not
numerous.?? One can expect a similar situation for other /, too. Therefore, we assume
that there are only two points of local resonance on each orbit. Then the mathematical
description of the resonant motion for different / turns out to be rather similar, and we
can generalize to any [ the analysis of the transition to chaos made for the case of the
GWB diffusion in Ref.2!.

Keeping only the resonance term in Eq. (59) and applying the stationary-phase method

to Eq. (60), we can write Eq. (59) as follows:

2

T eLrip SripBTUJ_ PL m
I= _(27TN)1/20 Z BEE ay Lriy cos [al + N¢ — sgn(C)ﬂ o (62)
j=1 §2=62j
where ¢, = ¢y, 7 = 1,2, are the coordinates of the points of the local resonance,
0? 2 0lnB I’R? lwpdIn R
E=wpio =272 () wpom (63)
osy  2qR% 06 N2p? N dt

For | = 0, Eq. (62) is in agreement with an equation of motion in the vicinity of the
resonance obtained from other considerations in Ref.?! [Eq. (21) of the mentioned work].

Below we restrict ourselves to the case of the up-down symmetry. Then, expanding I,
in a series near the resonance and taking into account that 0l5/0I; = 0 at the resonance,

we obtain from Egs. (55) and (62) the following expression for the resonance invariant:
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N 1 N
I= o @L‘Il:m (I, — I,)* + ;511(11,13,5) Cos [5%([1,13,5)] cos a7, (64)

where “r” refers to the value at the resonance, prime denotes 0/0; = —NO/0J +

(le/Mc)d/0p, v = 2|C(s25)| —7/(2N), @p = (7/N)(012/0L — 5) = 7(w, — Uws) /N)/ws,

5T — — 2m 12 eLyip SripBT'ULaI pL
TN c 2172 T\ Ly,

Note that one can attribute a graphic physical meaning to the quantities ¢, ¢,, and

(65)

§2=62;

0I,. Let ty,ts,13,... be consecutive instants of the local resonance, so that ¢ (t1) = <1,
G (t2) = 20 = —21, S2(ts) = <1, etc. Then it follows from the definitions of ¢, and ¢,
that the phase of the resonant ripple-particle interaction, 0 = N¢ — I® — sgn({)w/4 =

Ng¢g — Il + NC — sgn(¢)m/4, evolves between the resonance events as follows:

o(tajr1) = o(te;) + Ny + Ny, (66)

0(toj42) = 0(t2j+1) + Nop — Ny, (67)

where we have assumed for definiteness that ((s21) > 0, ((s22) < 0. In this sense, ¢, and
¢, play the same role as the corresponding quantities introduced in Refs."*' do for the
GWRB diffusion (in particular, for [ = 0 these quantities as they are defined here exactly

coincide with those in Refs.!%!)

. It turns out that 6I; is the characteristic jump of I; for
one local resonance event, which justifies the notation chosen for this quantity. Indeed,
in the averaged description [Eq. (54)] the jumps of I; can be found as the variation of I;
for half a bounce period. An equation for I; can be obtained from Eq. (54) by varying

ay. Substituting Eq. (65) for D, we obtain

t+7p/2 . N
/ dt I = =4I, cos [Egob(ll,lg,g)] sin . (68)
t

The structure of the resonance islands for the particle resonance with the ripple caus-
ing the GWB diffusion is known?! to depend crucially on the ratio of ¢}/ @) At small
v/ (p;,, the resonance islands constructed by the Poincaré mapping technique resemble the

classical Chirikov islands studied in the theory of nonlinear resonance,'® the island width
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1/2

depending on the ripple amplitude as 4,;,. When v,/ ¢, > 1, the Poincaré mappings show
the appearance of additional resonance islands aside from the main island. The arising
structure was called in Ref.2! “the resonance web”. The onset of the global stochasticity
coincides with the overlap of the webs of neighboring resonances (allowing for the /2
rule), the extent of which in this case is « d,4,. The difference of the mechanisms leading
to stochasticity in the two mentioned cases gives grounds to speak about two different
routes to chaos.?!

This difference in the island structure for different magnitudes of ¢ /¢ is reflected
by the level contours of the invariant given by Eq. (64). When ¢} is relatively small, the
cos iy, factor in Eq. (64) can be considered constant. Then the levels of line of the invariant
describe a conventional Chirikov island'® with the half width AL, = 2[011/(N))]"/?, see
Fig. 2. When, on the contrary, ¢} is large so that Q = (N/2)¢} AL, = ¢(N6I1 /)2 >
1, the second term in the right-hand side of Eq. (64) is a rapidly oscillating function
of I;. Then the level contours of I show chains of additional driven-resonance islands
(“resonance web”) on both sides of the resonance (see Fig. 3). An analysis of the local
extrema of /, which essentially repeats the analysis of the fixed points of the mapping in
Ref.?!] shows that the first driven islands appear at @ ~ 2. Comparing Fig. 3 (b) with
Fig. 7 of Ref.?!, one can see that the resonance invariant reproduces the structure of the
resonance islands obtained with Poincaré mappings well enough. Thus, it can be used
for evaluating the island width and finding the amplitude threshold of the transition to
stochasticity.

In the limit case of ¢; > ¢}, the chain of the driven islands ends when the derivative
of the first term in Eq.(64) exceeds that of the second one. Hence, we obtain the following
expression for the half-width of the resonance web (cf. Ref.?!):
_ Dy,

AL = —.
29,

(69)

The distance in I; between the neighboring resonances, Nw, + sw, — [{wg) = 0 and
Nuwy + (s + 1wy — l{wp) = 0, equals to 7/(N¢;,). Applying the 7/2 rule, we obtain the

critical value of 4I; (the stochasticity threshold):
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2

5llcrit = N(p;)

(70)

An expression for §/;.;; in the limit case, ¢}, > ¢}, were obtained for the GWB diffusion
in Ref.?!, allowing for the up-down asymmetry. However, it seems convenient for practical

purposes to use the approximate stochasticity threshold

2
5jlcrit = N( (71)

which was shown to work in a wide range of magnitudes of ¢ /¢! by direct calculations
of Poincaré mappings.2* The full mathematical similarity of the | = 0 and | # 0 cases
revealed in the above analysis enables us to use this equation for the stochasticity threshold
for the CRI diffusion, too. From Egs. (65) and (71) we obtain the following stochasticity

criterion:

< (2[ED* e

51"1' > 507«2' = = ) (72)
' T (wN)PeBui Lupai(p1 [ Leip) (I95] + [¢3])

where all quantities are taken at the local resonance point. In particular, this criterion
agrees with previously obtained criteria for the GWB diffusion (I = 0). Indeed, assuming
that p < L,;, we have L,;,a0(p1/Lrip) = p/2. For | = 0, primes become —(Nc¢/e)0/0%.
Taking 6 ~ 7/2 at the turning point, we write Eq. (63) as = = v?/(2¢R?), and Eq. (72)
reduces to the criterion of Ref.!. When p > L, the factor ay(p, /L) takes account of the
difference between the ripple magnitude at the guiding center and that averaged over
the Larmor circle (cf. Ref.?). As energetic ions in modern ST are characterized by large
Larmor radius exceeding L,;,, this correction may be considerable. For instance, this
results in a decrease of .. by a factor of 1.5 for p/L,;, = 2, as is the case for 80-keV
deuterons in NSTX. Note that Eq. (72) may not agree with the stochasticity threshold for
the CRI diffusion obtained in Refs.%»?>, especially for large magnitudes of Np/R, because

2,25

the criterion of Refs.”*> was obtained without taking account of jumps in P.

High 3 attributed to modern and future STs affects both ¢} and ¢j,. The change of
¢}, is a consequence of the fact that high 3 changes the precession frequency of trapped
)27

particles (even the direction of the precession can be changed)®" and strongly enhances
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the precession of circulating particles.” To demonstrate the effect of high 3 on ¢}, we
note that in the case of the GWB diffusion, ¢}, x [$60 — rB./Bj|, where B, = 0B/0r,
Bjy = 0B/d9, r < /1, and § is the magnetic shear. In CTs with low § the first term
dominates for # ~ 1. In contrast to this, the second term dominates at high 3. Indeed,
when 6 ~ 7/2, the magnetic field can be approximated in the region not very close to
the edge as B o< By(1 + a€?), where « is a parameter small for low 8 and well exceeding

unity at high 3,2 which leads to a large radial derivative of B for # ~ 1 and high 8.

VI. EFFECT OF STOCHASTIC DIFFUSION ON CONFINEMENT OF

ENERGETIC PARTICLES
A. Ripple-induced transport

To compare the relative role of various mechanisms of stochastic diffusion in the par-
ticular case of 80-keV ions in NSTX, we have calculated the stochastic region and diffusion
trajectories for various /, using a simplified model of the magnetic field. The calculations
show that the region of the GWB stochastic loss is relatively small, and the orbits of most
particles with banana tips in the region probably cross the wall even without ripple. The
loss regions of the [ =1 and [ = 2 diffusion are more extensive.

It is of importance to know which energetic particles can be lost during the stochastic
diffusion. It is clear that a particle can be lost if its local resonance point can reach
the wall along a trajectory determined by Eq. (18), while staying in the stochasticity
region. In the case of a low-f plasma, all trajectories of resonance points of the GWB
diffusion, are vertical lines and, thus, strike the wall. In contrast to this, the trajectories of
resonance points of the CRI diffusion are approximately ellipses; therefore, the loss region
shrinks with the increase of the resonant pitch angle, see Eq. (19). In high-3 plasmas,
some trajectories may lie within the plasma even for the GWB diffusion. On the other
hand, it is clear that not all particles can take part in the stochastic diffusion because
the particle must satisfy the condition of local resonance. For the GWB diffusion, this

condition singles out all trapped particles (more exactly, all particles with v = 0 at some
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point of the orbit). The situation in the case of the CRI diffusion is more complicated.
It turns out that the fraction of the phase space occupied by resonant particles increases
with the decrease of the resonance pitch angle, x, = [R/(Np), and is considerable in
NSTX. Indeed, the overall number of the particles that pass through the given value of
X = X, is approximately proportional to the variation of x on a trajectory of a single
particle, which can be estimated for a circulating particle as Ay = 2¢(1—x?)/x, (we have
used the equation x = (1 — ARy/R)'/?. Taking, for instance, ¢ = 0.5, we find that Ay ~ 1
for the [ = 1- and [ = 2-resonant particles in NSTX (x, = 0.3 and 0.6, respectively).
The CRI diffusion is not necessarily harmful. It improves the confinement of the
injected ions with v > 0 (which have the maximum radial excursion at § = 0) and
A < 1, leading to their inward motion (because for these particles AX > 0), see Eq. (15).
The CRI diffusion may result in orbit transformations, including transformations of
circulating particles into trapped ones (CT transformations) and vice versa (TC transfor-
mations). In order to see it, we write v = £v(1 — AB/B,)'/?, from which it follows that
CT and TC transformations may occur when BAX + AAB > 0 and BAA + AAB < 0,
respectively. As follows from Eq. (16), sgn(Ar) = sgn(lA)\), which means that the effect
of a change of A either enhances the effect of AB (for I > 0) or competes with it (for
[ < 0). In the latter case, AX can result in TC transformations during the outward motion

of particles provided that

BAN _ 2K(n)R _
MB  Ngp2\ ’

(73)

where we have used the relationship AB/B ~ 6r/Ry. The transformations due to the
[ < 0 diffusion result in a sharp increase (for CT transformations) or decrease (for TC
transformations) of the maximum r of the particle orbit.

A loss of particles because of the stochastic diffusion may occur through an “estafette”
of resonances with various /. In particular, the CRI diffusion of circulating particles that
results in the CT orbit transformation may be followed by the GWB diffusion.

The confinement of particles may severely deteriorate if the particles satisfy the

stochasticity criterion for several ! simultaneously. As such particles are able to move
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along several families of characteristics [Eqgs. (6)] corresponding to different [, their mo-
tion is not constrained by each of them. In this case, even well circulated particles can
diffuse from the plasma.

Let us compare the characteristic time of the particle loss due to stochasticity, 7p,
with the slowing-down time, 7,. Taking the characteristic jump of I; during a single
local resonance event, 611, from Eq. (65) and allowing for 61, = 613 = 0, we find the
characteristic jump of P, §P = N§I,. We take = = —ev? sin0/(2qR?), neglecting the rest
of the terms in Eq. (63). The radial particle jump can then be estimated as

cq 20,y [*N1(1—x*)]" pL
Ar = 0P = <Lri T | 4
4 eBrk k [ €3sin @ P Ly (74)

whence we evaluate the time required for a particle to pass the distance d as

wd? d?k2%e3 sin

Cwy(0r)? 4wpd7, P NLYa7 (1 Liip) (1 = X?)

) y (75)

where all quantities are taken at the local resonance point. Equation (75) is valid for
0 > Omin with sinf,,;, = (7/€)(wp/wp) for the circulating particles. When 6 < 6,
6 must be replaced by 6, in Eq. (75). Taking d = 30cm and parameters of 80-keV
deuterons in NSTX, we obtain 7p = 2.4 x 1072, which is higher than 7, in current NSTX
experiments (~ 107%s). We conclude that the ripple-induced stochastic diffusion can

hardly play noticeable role in NSTX until higher plasma temperatures are reached.

B. Transport in an axisymmetric field

The diffusion length (Lp) of an energetic ion can be estimated as Ly = +/D7,, where
7. is the slowing down time, D ~ (r)?/7, is the diffusion coefficient. Taking into account
that 6\ = 0 for A = 0 [see Eq. (26)], we use the characteristic magnitude A\ & A\j42/2,

where Az = 1/(1 + €) is the pitch angle of the marginally circulating particles. Then

oA
Ly=plet = 1), o222,
a=ple ) 8mtxm R k (76)
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For instance, for 80-keV D ions in NSTX with p = 20cm, r = a/2 = 33cm, € = 0.4,
g=1.57.=001s, A =0.36, 0\ = 1.8 x 10 2, we obtain Ly = 1.5cm. Thus, the effect
of the radial diffusion in the considered case is negligible. But maybe the pitch-angle
scattering itself can affect the particle confinement by resulting in orbit transformations
of a large fraction of the particles? This effect could be important in machines where
the width of the particle orbits (Arp) is comparable with the plasma radius, so that the
particles could be pushed into the loss cone by the orbit transformations.

Let us analyze this possibility.

One can see that (r) changes negligibly during the transformation (this can be easily
shown by using the equation P = const and taking into account that the precession
velocities of the marginally trapped and marginally circulating particles are approximately
equal). But 07,4, ~ Ary/2, which can result in escape of the particles to the loss cone.
However, one usually chooses such a direction of the injection that the transformation of
circulating particles to trapped ones is accompanied by a jump of 7,,;, inside the plasma,
whereas 07, = 0, in which case the transformation improves the confinement. To
see the role of the orbit transformation for particles with isotropic velocity distribution
(e.g., alpha particles), we estimate the local fraction of the circulating particles shifted
outwards/inwards (v;) as follows. We use the fact that when the distribution is isotropic,
v = |Axm|/2, where |Ax,| = [AXN(1 — €)/(2|xm|) (because |xm| = /1 — A(1 —¢€)), AX

is the diffusion in A for the slowing-down time given by

AN~ SN[ (77)
)
(1—¢) [
= =79 Tesa,
v 4Xm Th (78)

Taking again € = 0.4, A = 0.36, and 7./7, = 10*/(27), we have 6\ = 1.8 x 1073, x,,, = 0.88,

We obtain:

which leads to v, = 1.2%.
Thus, the Garren effect cannot influence energetic ions in the plasma core of NSTX,

but one cannot rule out that it will be noticeable at the plasma periphery.
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Note that effects of the nonconservation of i in spherical tori were studied in Refs.?8%.

In the first of them it was found that nonadiabaticity affects only beam ions already
following loss orbits and should not have any substantial negative effect on the confinement
of the energetic ions in NSTX, which agrees with our conclusion. In contrast to this, in
Ref.?? it was claimed that the nonconservation of u was expected to affect the confinement
of fast ions significantly, in particular, resulting in enhanced radial diffusion, although no

estimates of the radial diffusion were done.

VII. SUMMARY AND CONCLUSIONS

We have analyzed various mechanisms of the stochastic diffusion of energetic ions in
STs, the diffusion in both the axisymmetric magnetic field and the rippled field having
been studied. The analysis is carried out in a unified approach, in which different mecha-
nisms correspond to different magnitudes of [ (I = 0,+1,+2,...), where [ is the cyclotron
harmonic number in the local and global resonances responsible for the interaction be-
tween the energetic ions and the magnetic configuration. In this approach, the Garren
effect in an axisymmetric field corresponds to I = 1, but the local resonance, in contrast
to the global one, is imaginary, i.e., it occurs in the complex plane. The local and global
resonances with [ = 0 are responsible for the GWB diffusion, whereas | = +1,£2,+3, ...,
for the CRI diffusion caused by the ripple.

A Lagrangian formalism for the description of the nonadiabatic effects in the particle
motion is developed. Based on this formalism, a general expression for the critical ripple
amplitude is obtained, which in a special case of the GWB diffusion of particles with small
Larmor radius, p < Ly, yields the result of Refs."?*. In addition, a formula for a jump
of the magnetic moment (Garren effect) is derived, which agrees with that obtained by

9,10

a different procedure in Refs.”"”. Our formula takes into account effects of the plasma

pressure and has a simpler form. Therefore, we used it to analyze the Garren effect in
NSTX.

We have shown that CRI diffusion affects trapped and marginally circulating particle
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and plays larger role in STs than that in CTs, which is associated with a larger ratio of
p?/r? in STs. Furthermore, probably, in low-B STs it is more important than the GWB
diffusion. The GWB diffusion is weakened by the large toroidal precession. In addition,
most particles with the banana tips in the region of the strong ripple are promptly lost.
Although §..;; decreases due to the finite Larmor radius, this effect is not large. In
particular, in NSTX ¢,,;; decreases by a factor of 1.5. The CRI diffusion may result in
orbit transformations, the circulating particles can be transformed into the trapped ones
and vice versa, depending on the sign of [. Furthermore, an estafette of the resonances
may occur, i.e., various mechanisms of stochastic diffusion may be responsible for the
transport of a particle in the plasma core and near the periphery when stochastic regions
corresponding to different [ partly overlap. The character of diffusion in a region where
the stochasticity condition is satisfied for various [ simultaneously differs from that in a
region of stochasticity dominated by only one resonance.

Estimates of the ratio of the diffusion time of the 80-keV ions to their slowing-down
time indicate that the stochastic diffusion associated with the Garren effect and the ripple
is not fast enough to deteriorate the confinement of energetic ions in current experiments
on NSTX, i.e., the ions slow down before they diffuse over a considerable part of the plasma
radius. They show that the diffusion can have a noticeable effect only in the periphery
region. The situation may change if experiments deal with plasmas characterized by lower
density and higher electron temperature, in which case the slowing-down time of the
energetic ions will increase so that it may exceed the diffusion time. One can expect that
the loss of energetic ions will then increase. On the other hand, if the stochastic diffusion
in current experiments plays a noticeable role, the confinement of the energetic ions can
be improved by increasing the plasma density and decreasing the electron temperature
(to decrease the ratio T3 /2 /ne, where T, and n, are the electron temperature and density,
respectively).

In conclusion, we note that the magnetic field in a design of the spherical torus reactor
DTST is rather strong (B = 4.5T), and the plasma size is rather large (¢ = 74 cm,

R = 134cm).?® Therefore, one can expect that the GWB diffusion will dominate the
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stochastic motion of 3.5-MeV alpha particles in this machine.
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APPENDIX A: FIELD LINE CURVATURE IN A CIRCULAR TOKAMAK

We find the field line curvature to the first order in € = r/Ry < 1 in a tokamak with

( < 1 and a circular cross section. It follows from the equilibrium equation,
(VxB)xB = 47Vp, (A1)

that the field line curvature, k = (b - V)b, can be found as follows:

_ 1 2 _ 2 T 2
k=5 VLB +81p) = 0 [V(B +81p) — bV B } , (A2)
whence the scalar curvature is
1/2
K= 352 [|V(B2 + 87Tp)\2 — \VHBQH ) (A3)

As VB ~ €V | B, the second term of Eq. (A3) is €* times smaller than the first one and
will be neglected.
An axisymmetric magnetic field can be presented in the form

B = F(r)e’ + Legd—qj (Ad)

\/§ dr’
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where the coordinate system (r, 8, ¢) is taken so that the radial coordinate is constant on
each flux surface; ¥ = W(r) is the poloidal magnetic flux; F(r) = BoRy[1 + O(e + 3)]
is a function of 7 describing the plasma diamagnetism; e; and €/, j = 7,60, ¢, are the
corresponding co- and contravariant base vector; g is the determinant of the metric tensor.

One can show that in a circular tokamak to main order in €

Gog = T2a \/g = TROa gro ~ €T, (A5)

where g¢,9 and ggy are the corresponding components of the covariant metric tensor (see,
e.g., Ref.?!). Then the poloidal component of the magnetic field, B, in a circular tokamak
[which is described by the second term of Eq. (A4)] is constant over a flux surface to main

order,

1/2
_ (90 T AY _ €
B, = < ; ) o = B+ 0] (A6)

where ¢ is the safety factor. From Eqs. (A3), (A4), and (A6), the curvature is

1
T 2B2

K

v (%z + if 4 87rp> 1+ 0. (A7)

Using Egs. (A4)-(A6), Eq. (A1) can be written as follows:

dp 1 d(F? déeB} 2¢2 . B2
8T— 4+ — ——— 2 =—""_B:4+0 —= A8
Tdr + R? dr + dr ¢2 rg? " + “5 ) (A8)
whence
F? €2 F? €2 B? B?
— +B2_+38 =—-2—_VR-2—0 O], A9
v (R2 + 02 + 7rp) R3V e Vr + (e . (A9)

Comparing Egs. (A7) and (A9) and neglecting second-order terms, we find

~1/2
R.=rk'=R [1 +(VR-Vr) 26] =Ro[l+€e(l—q %) cosb]. (A10)

@
The ¢ 2 term in this equation describes the contribution of the poloidal curvature of
the field lines, which has the same direction as the curvature of the toroidal field at the
outer circumference of the torus and the opposite direction at the inner one. Elongation
(ellipticity) of the flux surfaces decreases the poloidal curvature near the equatorial plane

and reduces the ¢ 2 term.
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APPENDIX B: AVERAGING OF THE PARTICLE MOTION NEAR A

RESONANCE

In this Appendix we find an averaged description of the particle motion near the
resonance 2321 n;jw; = 0, assuming that there is no other resonance relation between the
frequencies of the system.

It is convenient for the foregoing to introduce the differential forms

Yoo = Lgedt =1 da — Edt, (B1)

5y, = OLqdt = SA - dx (B2)
C

corresponding to Egs. (53) and (32). (We restrict our consideration to the effect of the
ripple and do not consider the perturbation resulting from the nonadiabaticity in the
axisymmetric field, 6L, because, first, in this work we apply the results of this Appendix
only to 6L, and, second, a generalization of the results to d£; is evident.)

A basic idea of the averaging procedure is that “detuning” from the resonance, ¢,
is small when the perturbation is small. The Euler-Lagrange equations resulting from

Eq. (B1) are as follows:

(0L oL
(03] — <¥) 8—]_1 = Q]_, (B3)
oL\
Ay (a—;) = QO,, (B4)
. (oL oL _
3 = — <—ag) —81_3 = Q3, (B5)

(note that we consider I, as a function of the other action variables and £). From these
equations and the smallness of &1, we conclude that dI5/01I is small (and vanishes at the
exact resonance). Therefore, we split I, into two parts, Iy = I (l3,E) + elai(I1, I3, E),
where Iy (I3, &) is I with the argument I; taken at the exact resonance, ¢ is the ordering
parameter (in the end we will set € = 1 to obtain physically meaningful results). The

perturbation is also assumed to be ~ €. We arrive at the following differential form:
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Y=Y+ e, (B6)

where

Yo = ]1d0{1 +120(13,5)da2+13da3 —gdt, (B7)

Y1 :]21(11,13,5)da2+ %Adx (B8)

An advantage of this presentation of 7 is that all slow variables (I1, I3, £, and «;) are
constants of motion of the Euler-Lagrange equations resulting from .

Now we proceed to the averaging procedure. Following Ref.!®, we look for a Lie trans-
formation z = exp(¢G)z that makes the differential form independent on fast variables,
where z = (aq,an,a3,11,15,E,t) is the vector of the variables, z is the vector of the
corresponding new variables free of rapid oscillations to the first order, G is the transfor-
mation generator. The components of the differential form ~; in the new variables look

as follows:'®
’71]' ="y — Giwij + 8j5, (Bg)

where S is an arbitrary function of z; subscripts and superscripts denote co- and con-
travariant components, respectively; w;; = 0vo;/0z; — 070i/0z; are the Lagrange brackets
among the coordinates z in the system -, (note that perturbations of the magnetic field
modify the simplectic structure of the phase space and, in particular, the Lagrange brack-
ets); and summation over repeating indices is implied. Then the averaging reduces to
solving Eq. (B9) for G* and S, so that 7;; have the desired form. Specifically, we de-
mand that all 4;; should vanish except for j = ay and that %4, should not depend on
fast variables, as and a. Then the averaged Lagrangian will be given by Eq. (54), with
I(a1, 11,15, €) to be specified. In addition, we set G* = 0 (the time variable should not
be modified by the procedure).

We begin with finding w;;. From Egs. (B3)—(B5) one can see that all non-zero com-

ponents of this matrix are

wllal = w13a3 = W = _walll = _wa313 = —Wg = 1’ (BlO)
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Wegqy = —Waye = Q;l, (Bll)

Wools = —Wraay = 5 €. (B12)
On substituting w;; given by these equations to Eq. (B9), the ¢ component yields:
G¢ =4, = 0. (B13)
Then we take the ay and a3 components of Eq. (B9):

Tas = Vias + Q5 Q3G — Q1GE + 0,5, (B14)

71043 = 71&3 - GI3 + aa;;S = 0 (B15)

These equations (as well as some equations below) include the components of the differen-
tial form 7, in the z coordinates. By applying the chain rule to Eq. (B8), components can
be expressed in terms of derivatives 0x/0z, which cannot, in general, be easily calculated.
Fortunately, as we will see, we will not need explicit expressions for the components of

~1. It is only important for what follows that such components can be found in principle.

Excluding G from Egs. (B14) and (B15), we obtain:
Vias = Ve + QQ_IQB’Ylag + 8(125 + QQ_IQ380£3 S. (B16)

To solve this equation, we expand S, 7Y14,, and 714, in Fourier series, taking into account
that the components of v are periodic in oy and a3 with the period 2n3m:
- fo% Q
S= Y Sjexp <2]n—§ + ik—2) , (B17)

n
Jik=—00 3

with series for 714,, and 714, being similar. The non-oscillating terms of the equation

yield

~ 1 ngmw namw B
Yay = W / da2/ da3 ('yla2 =+ Q2 193’}’1&3). (B18)
—ngT —ngT

To avoid the necessity to deal with separate components of v;, we introduce the family

of curves L(<0, 1, P, 11, E) determined by the equations —nzm < ¢ < ngm, ¢ = <9 +
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(w1/we)s2, 63 = (1 — n161 — Nas2)/n3, P = const, u = const, & = const. Then 7,, can

be written in the form

1 /n37r /
Yoy = ——5 d<io T (B19)
@2 4:71—2”% —nsmw L(Clo;al;P;Hag)

Using Egs. (B7) and (B8), we find that I = 74, + J1a, is given by Egs. (55) and (56).

The oscillating terms of Eq. (B16) can be solved for S:

_ e F Q' V3144

S.
7" o+ Q5 sk

(B20)

where |j| + |k| > 0. As the constant term Sy is not essential, we may set Sgp = 0.
Note that the absence of additional resonances is important at this point: If Q5 'Q3 were
rational, the denominators in some terms would vanish, and S could not be found.

On finding S, we easily find the remaining components of G from Eqs. (B15) and other

components of Eq. (B9):

G" = Yoy + 00,8, G* ==y, — 01, S, (B21)
GI3 frd 71043 + aa3S, Ga2 = —QQ(’YIS + 685)7 (B22)
G* = —vy1, — 0SS — Q3(11e + 0£S). (B23)

Relations between “averaged” and “non-averaged” coordinates can be found from
Egs. (B13) and (B21)-(B23): z = exp(eG)z =~ z + G, where, as we have stated, ¢

should be set to unity for physically meaningful results.
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FIG. 1. Level contours of B in a numerically calculated NSTX equilibrium with 8 =~ 25%.

The sizes are in centimeters; B, in kilogausses.
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FIG. 2. Level contours of I given by Eq. (64) for Q@ = 0.05, <p;, = 1, NéI; = 0.01,

oo = (I — I1y), ¢, = 0.5.
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FIG. 3. The same as Fig. 2 but for Q = 6, ¢, = 60. (a), in the coordinates (a1, N(I1 — I,));
(b), in the coordinates (a1, N(I; — I1,)), where ai; = ay — N¢pp/2 is the perturbation phase in
one of the local resonance points. The distances between the levels are not uniform in order to

show driven islands.
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